dragonn.tutorial_utils module

class dragonn.tutorial_utils.Data(X_train, X_valid, X_test, y_train, y_valid, y_test, motif_names)

Bases: tuple

X_test

Alias for field number 2

X_train

Alias for field number 0

X_valid

Alias for field number 1

motif_names

Alias for field number 6

y_test

Alias for field number 5

y_train

Alias for field number 3

y_valid

Alias for field number 4

dragonn.tutorial_utils.SequenceDNN_learning_curve(dnn)[source]
dragonn.tutorial_utils.get_SequenceDNN(SequenceDNN_parameters)[source]
dragonn.tutorial_utils.get_available_simulations()[source]
dragonn.tutorial_utils.get_simulation_data(simulation_name, simulation_parameters, test_set_size=4000, validation_set_size=3200)[source]
dragonn.tutorial_utils.get_simulation_function(simulation_name)[source]
dragonn.tutorial_utils.inspect_SequenceDNN()[source]
dragonn.tutorial_utils.interpret_SequenceDNN_distributed(dnn, simulation_data, plot_layer_outputs=False)[source]
dragonn.tutorial_utils.interpret_SequenceDNN_integrative(dnn, simulation_data)[source]
dragonn.tutorial_utils.plot_SequenceDNN_layer_outputs(dnn, simulation_data)[source]
dragonn.tutorial_utils.plot_motifs(simulation_data)[source]
dragonn.tutorial_utils.plot_sequence_filters(dnn)[source]
dragonn.tutorial_utils.print_available_simulations()[source]
dragonn.tutorial_utils.print_simulation_info(simulation_name)[source]
dragonn.tutorial_utils.test_SequenceDNN(dnn, simulation_data)[source]
dragonn.tutorial_utils.train_SequenceDNN(dnn, simulation_data)[source]