dragonn.models module¶
-
class
dragonn.models.
DecisionTree
[source]¶ Bases:
dragonn.models.Model
-
class
dragonn.models.
MotifScoreRNN
(input_shape, gru_size=10, tdd_size=4)[source]¶ Bases:
dragonn.models.Model
-
class
dragonn.models.
RandomForest
[source]¶ Bases:
dragonn.models.DecisionTree
-
class
dragonn.models.
SVC
[source]¶ Bases:
dragonn.models.Model
-
class
dragonn.models.
SequenceDNN
(seq_length, use_deep_CNN=False, use_RNN=False, num_tasks=1, num_filters=15, conv_width=15, num_filters_2=15, conv_width_2=15, num_filters_3=15, conv_width_3=15, pool_width=35, L1=0, dropout=0.0, GRU_size=35, TDD_size=15, verbose=1)[source]¶ Bases:
dragonn.models.Model
Sequence DNN models.
- seq_length : int
- length of input sequence.
- use_deep_CNN : bool, optional
- uses 3 layered CNN if True, 1 layered CNN if False. Default: False.
- num_tasks : int,
- number of tasks. Default: 1.
- num_filters : int
- number of 1st layer convolutional filters. Default: 15.
- conv_width : int
- width of 1st layer convolutional filters. Default: 15.
- pool_width : int
- width of max pooling. Default: 35.
- num_filters_2 : int
- number of 2nd layer convolutional filters. Default: 15.
- conv_width_2 : int
- width of 2nd layer convolutional filters. Default: 15.
- num_filters_3 : int
- number of 3rd layer convolutional filters. Default: 15.
- conv_width_3 : int
- width of 3rd layer convolutional filters. Default: 15.
- L1 : float
- strength of L1 penalty.
- dropout : float
- dropout probability in every convolutional layer. Default: 0.
- num_tasks : int
- Number of prediction tasks or labels. Default: 1.
- verbose: int
- Verbosity level during training. Valida values: 0, 1, 2.
Compiled DNN model.
-
class
LossHistory
(X_train, y_train, validation_data, sequence_DNN)[source]¶ Bases:
keras.callbacks.Callback
-
class
SequenceDNN.
PrintMetrics
(validation_data, sequence_DNN)[source]¶ Bases:
keras.callbacks.Callback